NPS55-79-028
 NAVAL POSTGRADUATE SCHOOL, Monterey, California

CHANNELS THAT COOPERATIVELY SERVICE A DATA STREAM AND VOICE MESSAGES, II: DIFFUSION APPROXIMATIONS
by
J. P. Lehoczky and
D. P. Gaver

November 1979

Approved for public release; distribution unlimited.
Dranarat for:
Naval Research
FEDDOCS
, VA 22217

Naval Postgraduate School
Monterey, California
Rear Admiral T. F. Dedman Superintendent

Jack R. Borsting
Provost

This report was prepared by:

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING, FORM
1. REPORT NUMEER 2. GOVT ACCESSION NO. NPS55-79-028	3. RECIPIENT'S CATALOG NUMBER
4 TITLE (and Subtitte) Channels that Cooperatively Service a Data Stream and Voice Messages, II: Diffusion Approximations	5. TYPE OF REPORT \& PERIOD COVERED Technical 6. PERFORMING ORG REPORT NUMBER
7. AUTHOR(s) J. P. Lehoczky and D. P. Gaver	8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey, Ca. 93940	10. PROGRAMELEMENT, PROJECT TASK AREA \& WORK UNIT NIJMEERS $\begin{aligned} & \text { 61152N; R000-01-10 } \\ & \text { N0001480WR0054 } \end{aligned}$
11. CONTROLLING OFFICE NAME AND ADDRESS Chiof of Naval Research Arlington, VA 22217	12. REPORT OATE NOVEMBEY 1979 13 NUMBER OF PAGES 43
14. MONITORING AGENCY NAME \& ADDRESS(If different from Controllind Office)	1s. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION DOWNGRADING SCHEDULE

Approved for public release; distribution unlimited.
17. OISTRIBUTION STATEMENT (Of the abstract entered in Rlock 20, if different from Report)

SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on roverse side li nocessary and ldently by block number

Communication
Channels
Queues
Probability Models
20. ABSTRACT (Contlnue on reverse side If necessary and ldentity by block number)

A system of channels mutually accommodate both data and voice messages, voice having preemptive priority but being a loss system, and data being allowed to queue. Approximations to the data queue properties are derived.
J. P. Lehoczky Carneige-Mellon University Pittsburgh, PA
D. P. Gaver

Naval Postgraduate School
Monterey, CA.

1. INTRODUCTION

In this paper, the study of the behavior of an element of a communication system carrying both data and voice traffic is continued. In a previous paper, Gaver and Lehoczky (1979), a fluid flow approximation was developed to predict the characteristics of the data queue length for such a system. The fluid flow approach applied to the case in which the data service rate, n, was large compared with the voice service rate, μ; for example, when $n / \mu \sim 10^{4}$. In this paper, a different approach is taken: a wiener process approximation is developed. The accuracy of this approximation depends on the "heavy traffic" assumption, that is that the overall traffic intensity should approach unity from below. One need not make any assumption concerning the individual parameters. It follows that the diffusion approximation complements the fluid flow approximation to give a more complete picture of the behavior of voice-data communication systems.

[^0]The communication system to be studied is essentially a part of the SENET network as described by Coviello and Vena (1975) or Barbacci and Oakley (1976). This network employs time-slotted frames. A certain portion of each frame is allocated to voice traffic, while any data traffic can use all remaining capacity including any left unused by voice. The voice traffic cannot use any unused data capacity and operates as a loss system. We introduce probabilistic assumptions, conventional in many queueing studies. Voice traffic arrives according to a Poisson (λ) process, and each voice customer has an independent exponential(μ) service time. Data arrivals are governed by an independent Poisson ($\delta)$ process and exhibit independent exponential (η) service times. A total of c channels are reserved for exclusive use of data, while v channels can be used by both data and voice; however, voice pre-empts data. The assumptions imply that voice can be modelled as an $M / M / V / v$ loss system, and the well-known "Erlang B " loss formula will give the loss rate. We focus our attention on the behavior of the data queue and seek to develop expressions for the steady-state distribution and the mean queue length. Many authors have studied such a system, including Halfin and Segal (1972), Halfin (1972), Fischer and Harris (1976), Bhat and Fischer (1976), Fischer (1977), Chang (1977), and Gaver and Lehoczky (1979). Only the latter paper gives approximations valid for the extreme but realistic case in which η / μ is large, and none give a wiener approximation.

Rather than focus on this simple version of the problem, we wish to provide a somewhat more general analysis. The generalizations arise when one considers more complex voice service. Two types of generalizations are rated here.

In general, voice traffic is unlike data traffic. A voice communication is actually a series of bursts or talkspurts separated by silence. It is reasonable to model a conversation as a two-state Markov chain of alternating talk and silence. Exponential holding times are appropriate for talkspurt and silence lengths, see Brady (1965). During the periods of silence, the voice channel is available for data traffic. This extra channel capacity can serve to allow for increased data utilization, or to reduce the data queue length, or both. The voice process can be described by a Markov chain for which each state provides a description of the number of voice customers requesting service and the number actually using the channel. For each voice state one can compute the number of channels available for data, and thus the data transition rates.

A second generalization allows for the addition of extra voice channels by reducing the quality. One strategy available to provide adequate voice and data capacity is to assign voice users to certain acceptable quality voice channels, say 6 or 8 KBPS. When a specified number of voice users are in the system, new voice users are assianed to less acceptable channels, say with 2 or 4 KBPS. In this way, one has increased the number of voice users that can be serviced at the expense of the rualitv of the voice
transmissions. This situation can also be incorporated into our structure. One again defines voice states: each state provides a description of the voice channels in use. One can specify a generator Q for the Markov process over the states and use it to compute the channel availability for data for each state. To include this and other possible generalizations, we assume that the voice process is a continuous time Markov chain with finite state space and that it subordinates the data queue length process. We will work out formulas for the special case in which the voice is an $M / M / V / v$ queueing system.
2. Diffusion Approximation Approach

We assume that the voice process $\{V(t), t \geq 0\}$ can be described by a Markov chain with state space $\{1,2, \ldots, N\}$. We let this Markov chain have generator $Q=\left(q_{i j}\right)$, an $N \times N$ matrix, and stationary distribution 7, An important special case occurs when voice operates as an $M / M / v / v$ loss system in which case

and then $\underset{\sim}{\pi}=\left(\pi_{0}, \cdots, \pi_{v}\right)$ with

$$
\pi_{i}=\frac{\rho_{v}^{i} / i!}{\sum_{j=0}^{v} \rho_{v}^{j} / j!}, \quad \rho_{v}=\frac{\lambda}{\mu}
$$

Each voice state i gives a number of channels available for data, say c_{i}. From c_{i} one can compute the rate, r_{i}, at which the data queue increases or decreases. Here $r_{i}=\delta-n c_{i}$. We let

$$
\underset{\sim}{R}=\left(\begin{array}{ccc}
r_{1} & & \bigcirc \tag{2.2}\\
& \ddots & \\
C & & r_{N}
\end{array}\right)
$$

For stability one requires $\sum_{i=1}^{N} \pi_{i} r_{i}<0$. In the special case for which $\underset{\sim}{Q}$ is given by (2.1), these conditions become

$$
\sum_{i=0}^{v} \frac{\rho_{v}^{i}}{i!}(\delta-(c+v-i) \eta)<0
$$

where data has exclusive use of c channels and the voice has v channels. This condition can be written $\rho<1$ where $\rho=\left(\rho_{d}+\rho_{v}(l-q)\right) /(c+v), \rho_{d}=\delta / \eta, \rho_{v}=\lambda / \mu$, and q is the blocking probability

$$
q=\frac{\rho_{v}^{v} / v!}{\sum_{j=0}^{v} \rho_{v}^{j} / j!}
$$

We develop a Wiener process approximation under a heavytraffic assumption that $\sum_{i=1}^{N} r_{i} \pi_{i}$. This entials finding an appropriate infinitesimal mean and variance. Locally tine data
queue length process does not resemble a Wiener process. If voice is in state i, the change in the data queue is nearly deterministic and equal to $r_{i} d t$ rather than a normally distributed random variable. Nevertheless, if we consider a longer period of time, say $[t, t+T]$ with T large, then the change in queue length will be more reasonably assumed to be normally distributed. The next section contains the outline of a proof that a suitably sealed version of the process converges to a Wiener process. This proof does not require the fluid flow approach of η / μ large, so a slightly more refined variance term is derived. The Wiener process derived will have a reflecting barrier at 0 .

The voice process subordinates the data process; see Feller [], pp. for the notion of subordination. If voice is in state $V(t)$, then the data queue is increasing at rate $r_{V(t)}$ over $[0, t+d t]$. The expected change over $[t, t+T]$ is given by

$$
E \int_{t}^{t+T} r_{V(s)} d s=\int_{t}^{t+T} E\left(r_{V(s)}\right) d s=\int_{t}^{t+T} \sum_{i=1}^{N} r_{i} P(v(s)=i) d s
$$

For the case of T large we can assume $V(t)$ has the stationary distribution, thus $V(s)$ has distribution $\underset{\sim}{\pi}$ for all s. The expected change over $[t, t+T]$ thus becomes $T \sum_{i=1}^{N} r_{i} \pi_{i}$. Notice that the data queue is very large, so the boundary is not encountered. For a wiener process, this expected change would be
mT again assuming that the boundary is not encountered. We thus find

$$
\begin{equation*}
m=\sum_{i=1}^{N} r_{i} \pi_{i}=\pi_{\sim}^{T} \stackrel{R l}{\sim} \tag{2.3}
\end{equation*}
$$

We follow a similar method to determine σ^{2}. The variance in the change in the data queue length over $[t, t+T]$ is given by

$$
\operatorname{Var} \int_{t}^{t+T} r_{V(s)} d s
$$

We again assume $V(s)$ has distribution $\underset{\sim}{\pi}$, so this variance is equal to
$\operatorname{Var} \int_{0}^{T} r_{V(s)} d s$

$$
=E\left(\int_{0}^{T} r_{V(s)} d s\right)^{2}-\left(E \int_{0}^{T} r_{V(s)} d s\right)^{2}=E\left(\int_{0}^{T} r_{V(s)}\right)^{2}-(\pi R I)^{2} T^{2}
$$

The last term can be computed to be

$$
\begin{aligned}
E\left(\int_{0}^{T} r_{V(s)} d s\right)^{2} & =E \int_{0}^{T} \int_{0}^{T} r_{V(s)^{\prime}} r_{V(t)} d s d t=\int_{0}^{T} \int_{0}^{T} E\left(r_{V(s)} r_{V(t)}\right) d s d t \\
& =2 \int_{0}^{T} \int_{0}^{T} \sum_{i=1}^{N} r_{i} P(V(s)=i) E\left(r_{V(t)} \mid V(s)=i\right) d s d t \\
& =2 \int_{0}^{T} \int_{0}^{T} \sum_{i=1}^{N} r_{i} \pi_{i} \sum_{j=1}^{N} r_{j} P(v(t)=j \mid V(s)=i) d s d t .
\end{aligned}
$$

We let $p_{i j}(u)=P(V(u)=j \mid V(0)=i)$ and $\underset{\sim}{P}(u)=\left(p_{i j}(u)\right)$. The Kolmogorov forward equations give $\underset{\sim}{P}(u)=\exp ($ Qu) where $\exp (\underset{\sim}{M})=\underset{\sim}{I}+\underset{\sim}{M}+\underset{\sim}{M^{2}} / 2!+\cdots$ for a square matrix $\underset{\sim}{M}$. one can reexpress the second moment in matrix form as

$$
\begin{aligned}
E\left(\int_{0}^{T} r_{V(s)} d s\right)^{2} & =2 \int_{0}^{T} \int_{0}^{t} \pi R \exp (Q(t-s)) \underset{\sim}{R 1} d s d t \\
& =2 \pi R \int_{0}^{T} \int_{0}^{t} \exp (\underset{\sim}{Q} u) d u d t \underset{\sim}{R 1} .
\end{aligned}
$$

In view of the fact that $\underset{\sim}{Q}$ is singular, one can most easily carry out the required integration by introducing the eigenvalue decomposition $\underset{\sim}{Q}=\underset{\sim}{\Phi} \underset{\sim}{\Psi}$ with

$$
\underset{\sim}{D}=\left(\begin{array}{llll}
\theta_{1} & & & \\
& \theta_{2} & & \\
& & \ddots & \\
& & & \theta_{\mathrm{N}}
\end{array}\right)
$$

a diagonal matrix of eigenvalues,

$$
\underset{\sim}{\Phi}=\left(1, \Phi_{2}, \ldots, \Phi_{N}\right), \quad \underset{\sim}{\Psi}=\left(\frac{\pi}{\sim}, \psi_{2}, \ldots, \psi_{N}\right)^{T},
$$

the associated right- and left-eigenvectors. Here $\underset{\sim}{\Phi}=\underset{\sim}{\Psi} \Phi=I$. Since $\underset{\sim}{Q}$ is irreducible and finite θ_{i} has a negative real part for $2 \leq i \leq N$. It follows that

$$
\int_{0}^{T} \int_{0}^{t} \exp (\underset{\sim}{Q} u) d u d t=\Phi \int_{0}^{T} \int_{0}^{t} \exp (\underset{\sim}{D u}) d u d t
$$

with $\alpha_{i}=\theta^{-i}\left(\theta^{-i}\left(e^{\theta_{i}^{T}}-1\right)\right)$. Since θ_{i} has a negative real part $\alpha_{i} \sim-T / \theta_{i}$ as $T \rightarrow \infty$. For large T, the second moment can be written approximately as
thus the variance is given by

The first and last terms cancel to give

$$
\operatorname{Var}\left(\int_{0}^{T} r_{V(s)} d s\right)=-2 T \pi^{T} \stackrel{R \Phi}{ }\left(\begin{array}{cccc}
0 & \theta_{2}^{-1} & & \frown \tag{2.4}\\
& \cdot & & \\
& \vdots & \cdot & \theta_{N}^{-1}
\end{array}\right) \stackrel{\Psi_{R 1}}{ }
$$

For a Wiener process, this variance would be given by $T \sigma^{2}$.
We let

$$
Q^{-}=\Phi\left(\begin{array}{cccc}
0 & & & \frown \tag{2.5}\\
& \theta_{2}^{-1} & & \ddots \\
& & \cdot & \\
& \frown & & \\
& & & \theta_{\mathrm{N}}^{-1}
\end{array}\right) \stackrel{\Psi}{\sim}
$$

so Q^{-}is a reflexive generalized inverse of Q obtained by reciprocating nonzero eigenvalues. We note that both $\underset{\sim}{Q Q}{\underset{\sim}{-}}_{Q}^{Q}=\underset{\sim}{Q}$ and $\mathbb{Z}_{\sim}^{-}{\underset{\sim}{\sim}}^{-}={\underset{\sim}{~}}^{-}$hold, thus we write

$$
\begin{align*}
\frac{\sigma^{2}}{2} & =-\pi_{\sim}^{T} \underset{\sim}{R Q} \tag{2.6}\\
\sim & R 1 \\
m & =\pi_{\sim}{ }^{+} \xrightarrow[\sim]{R 1}<0 .
\end{align*}
$$

The crucial parameter $2 \mathrm{~m} / \sigma^{2}$ can thus be calculated.
We illustrate the formulas in (2.6) for the special
case where \mathbb{Q} is given by (2.1). For this case

$$
\begin{aligned}
& =\frac{1}{\mu} \pi^{T} R_{R}{ }^{-}(R-m I) \beth+\frac{m}{\mu} \pi^{T} B S^{-} \downarrow .
\end{aligned}
$$

For our choice of $\underset{\sim}{S^{-}}, \underset{\sim}{S_{\sim}^{-}}=\underset{\sim}{0}$, thus

$$
\frac{\sigma^{2}}{2}=\frac{1}{\mu} \pi^{T}{ }_{\sim}^{R} S^{-}(R-m I) 1=\frac{1}{\mu}{\underset{\sim}{r}}^{T}{\underset{\sim}{R S}}^{-} y
$$

where $\underset{\sim}{y}=(\underset{\sim}{R}-m I) \geq$. We note that ${\underset{\sim}{r}}^{\top} \underset{\sim}{y}=0$, so if $\underset{\sim}{z}={\underset{\sim}{s}}^{-} y$, then $\underset{\sim}{S z}=y$ is a consistent set of equations and $\underset{\sim}{\sim} \underset{\sim}{T} z=0$. In general one can solve (2.6) by direct calculation of \mathcal{Q}^{-}; however, this is rarely possible. A second approach is to solve $\underset{\sim}{Q}=\mathbb{Z}$ subject to $\underset{\sim}{\pi} \underset{\sim}{T}=\underset{\sim}{0}$. For $\mathbb{\sim}$ © form (2.1), this can be carried out. The equations become

$$
\begin{align*}
\rho_{v}\left(z_{i}-z_{i-1}\right)-(i-1)\left(z_{i-1}-z_{i-2}\right) & =r_{i-1}-m, 1 \leq i \leq v \\
-v\left(z_{v}-z_{v-1}\right) & =r_{n}-m \tag{2.7}\\
\sum_{i=0}^{v} \frac{\rho^{i}}{i!} z_{i} & =0
\end{align*}
$$

One can easily find

$$
z_{k}-z_{k-1}=\frac{\sum_{j=0}^{k-1} \pi_{j}\left(r_{j}-m\right)}{\rho_{v} \pi_{k-1}} .
$$

We define

$$
T_{k}=\sum_{j=0}^{k} \pi_{j}\left(r_{j}-m\right)
$$

Thus $T_{v}=0$ and $z_{k}-z_{k-1}=T_{k-1} / \rho_{v} \pi_{k-1}$. Moreover

$$
z_{k}=z_{0}+\sum_{j=1}^{k} z_{j}=z_{0}+\sum_{j=1}^{k} \frac{T_{j}-1}{\rho_{v}{ }^{\pi} j-1} .
$$

The $\sum_{i=0}^{V} \pi_{i} z_{i}=0$ condition gives

$$
z_{0}=-\sum_{k=1}^{v} \pi_{k} \sum_{j=1}^{k} \frac{T_{j-1}}{\rho_{v^{\pi} j-1}} .
$$

The vector $\underset{\sim}{z}$ has now been explicitly determined, and it remains to compute

$$
\frac{1}{\mu} \pi_{\sim}^{T}{ }_{\sim}^{\mathrm{R} z}=\frac{1}{\mu}{\underset{\sim}{r}}^{\pi^{\mathrm{R}}} \underset{\sim}{R}\left(z_{0} \underset{\sim}{1}+\left(0, u_{1}, \ldots, u_{v}\right)\right)
$$

with

$$
u_{k}=\sum_{j=1}^{k} \frac{T_{j-1}}{\rho_{v}{ }^{T} j-1} .
$$

We find

$$
\begin{aligned}
& \frac{1}{\mu} \pi^{T} R z=-\frac{m}{\mu} z_{0}+\frac{1}{\mu} \sum_{k=1}^{V} \pi r_{k} \sum_{i=1}^{k} \frac{T_{i-1}}{\rho_{v}{ }^{\pi} i-l} \\
& =\frac{l}{\mu} \sum_{k=1}^{V} \pi_{k}\left(r_{k}-m\right) \sum_{i=1}^{k} \frac{T_{i-1}}{\rho_{v} \pi_{i=l}} \\
& =\frac{1}{\mu} \sum_{i=1}^{V} \frac{T_{i-1}}{\rho_{v^{\pi} i-1}} \sum_{k=i}^{V} \pi_{k}\left(r_{k}-m\right)=\frac{1}{\mu} \sum_{i=1}^{V} \frac{T i-1}{\rho_{v}^{\pi} i-1}\left(-\sum_{k=0}^{i-l} \pi_{k}\left(r_{k}-m\right)\right) \\
& =-\frac{1}{\mu} \sum_{i=1}^{V} \frac{T_{i-1}^{2}}{\rho_{v}{ }^{\pi} i-1}=-\frac{1}{\mu} \sum_{i=0}^{v-1} \frac{T_{i}^{2}}{\rho_{v{ }^{\pi} i}} .
\end{aligned}
$$

We thus derive

$$
\begin{equation*}
\frac{\sigma^{2}}{2}=\frac{1}{\mu} \sum_{i=0}^{v-1} \frac{T_{i}^{2}}{v i}, \quad T_{i}=\sum_{j=0}^{i} \pi_{j}\left(r_{j}-m\right) \tag{2.8}
\end{equation*}
$$

For the special case considered $r_{j}=S-(c+v-j) \eta$
$=\eta\left(\rho_{d}-(c+v)+j\right)$. One finds

$$
\begin{aligned}
m & =\sum_{i=0}^{v} \eta\left(\rho_{d}-(c+v)+j\right) \frac{\rho_{v}^{j}}{j!S_{v}} \\
& =\eta\left[\rho_{d}-(c+v)+\rho_{v}(l-q)\right]
\end{aligned}
$$

where $q=\rho_{\mathrm{v}}^{\mathrm{V}} / \mathrm{v}!\mathrm{S}_{\mathrm{v}}$ is the blocking probability. Thus $m=-n(c+v)(l-\rho)$. Plugging into (2.8) we find

$$
\frac{\sigma^{2}}{2}=\frac{\eta^{2}}{\rho_{v}{ }^{\mu}} \sum_{i=0}^{1} \frac{\left(\sum_{j=0}^{i} \frac{\rho_{v}^{j}}{j!}\left[\rho_{d}-(c+v) \rho+j\right]\right)^{2}}{S_{v} \rho_{v}^{i} / i!}
$$

This can be simplified by letting $q_{i}=\rho_{V}^{i} / i!S_{i}$, the blocking probability for an $M / M / i / i$ system with traffic intensity ρ_{V}. We find

$$
\begin{equation*}
\frac{\sigma^{2}}{2}=\frac{\eta^{2} \rho_{v}}{\mu} \sum_{i=0}^{v-l} \frac{s_{i}}{S_{v}} \frac{\left(q_{i}-q_{v}\right)^{2}}{q_{i}}, \quad s_{i}=\sum_{j=0}^{i} \frac{\rho_{v}^{j}}{j!} \tag{2.9}
\end{equation*}
$$

The special case $v=1$ gives

$$
\frac{\sigma^{2}}{2}=\frac{\eta^{2}}{\mu} \frac{\rho_{v}}{\left(1+\rho_{v}\right)^{2}}
$$

We thus have given explicit formulas for the infinitesimal mean and variance of a Wiener process with reflecting barrier at 0 . One can therefore use standard results for Wiener processes with reflecting barriers to derive the stationary distribution--it will be exponential with parameter $2 \mathrm{~m} / \sigma^{2}$. The stationary mean queue length will thus be $\sigma^{2} / 2 \mathrm{~m}$; where σ^{2} and m are given by (2.6) and (2.8). For example when $v=1$ and $c=0$

$$
\frac{\sigma^{2}}{2 m}=\frac{\eta}{\mu} \frac{\rho_{V}}{(1-\rho)\left(1+\rho_{v}\right)^{3}}
$$

This is developed under heavy traffic conditions, i.e., 1 . For such conditions

$$
\rho_{d}+\frac{\rho_{v}}{1+\rho_{v}} \rightarrow 1
$$

or

$$
\left|\rho_{d}-\frac{1}{1+\rho_{v}}\right| \rightarrow 0
$$

It follows that the above expression is also

$$
\frac{\eta}{\mu} \frac{\rho_{v} \rho_{d}}{(1-\rho)\left(1+\rho_{v}\right)^{2}}
$$

in agreement with Fischer (1977) and Gaver and Lehoczky (1979). The characterization of the data queue as a Wiener process with reflecting barrier allows one to discuss the dynamics of the data queue. For example, suppose the data queue is at level x at time t where x is large. One might wish to study the time that elapses until the queue becomes empty. This is the duration of a busy period started at x, and corresponds to a first-passage time for a Wiener process which we denote by t_{x}. Moreover one might also be interested in the area beneath the sample path until it reaches the boundary of Q, since this area gives the total time waited by all customers involved in the busy period. We let this area be $A(x)$ and seek to compute $t_{x}=E\left(T_{x}\right)$ and $a(x)=E(A(x))$. Straightforward backward equation or martingale arguments give

$$
\begin{aligned}
t_{x} & =-x / m \\
a(x) & =-\frac{x^{2}}{2 m}+\frac{\sigma^{2}}{2 m^{2}} x
\end{aligned}
$$

where m is negative, and m and σ^{2} are given earlier. The distribution of the first passage time can also be easily calculated; however, its Laplace transform is most convenient to find and is given by

$$
E\left(e^{-s \tau} x\right)=\exp \left[\left(\frac{x}{\sigma}\right)-\left(\frac{m}{\sigma}\right)-\sqrt{\left(\frac{m}{\sigma}\right)^{2}+2 s}\right]
$$

4. A Refined Diffusion Approximation

In this section we continue the development of a diffusion approximation for the data queue length process. The analysis is patterned after the important semigroup methods of Burman [1979]. One develops a sequence of Markov processes and studies the behavior of their generators. One shows that the generators converge and hence concludes that the associated semi-groups converge. This entails the convergence of the finite dimensional distributions. The limiting finite dimensional distributions will be those of a certain Brownian motion. The theory underlying this approach is based on theorems of Trotter and Kato, Kurtz and Burman; the reader is referred to Burman (1979) for technical details. We will illustrate the approach in the context of the special case $v=1, c=0$. The method applies to the case of general c and v but the details are not given here.

Let $\{v(t), t \geq 0\}$ be the voice process, a Markov process with state space $\{0,1\}$. Let $N(t)$ be the data system size at time t. We study the sequence of Markov processes $\left\langle\left\{\left(X_{n}(t), V_{n}(t)\right), t \geq 0\right\}\right\rangle_{n=1}^{\infty}$ where

$$
\begin{equation*}
x_{n}(t)=N(n t) / \sqrt{n} \quad \text { and } \quad V_{n}(t)=V(n t) \tag{3.1}
\end{equation*}
$$

The generator of this bivariate process is easy to compute since $V_{n}(t)$ subordinates $X_{n}(t)$. Let $f(x, k)$ be a function with domain $[0, \infty) \times\{0,1\}$ which is smooth as a function of x for each $k=0, l$. The generator is given by

$$
\begin{aligned}
& \left\{\begin{array}{l}
\delta n[f(x+1 / \sqrt{n}, k)-f(x, k)] \\
+(1-k) n \Omega[f(x-1 / \sqrt{n}, k)-f(x, k)]+n Q f(x, k)
\end{array}\right. \\
& \text { for } x \geq 1 / \sqrt{n} \\
& \delta n[f(1 / \sqrt{n}, k)-f(0, k)]+n Q f(0, k) \\
& \text { for } x=0 \text {. }
\end{aligned}
$$

where Q is the generator of the $M / M / l / l$ voice process and is given by (2.1).

Next expand in a Taylor series and collect terms to rewrite (3.2) as

$$
A_{n} f(x, k)=\left\{\begin{aligned}
& n Q f(x, k)+\sqrt{n} f_{x}(x, k)(\delta-(1-k) \eta) \\
&+\frac{1}{2} f_{x x}(x, k)(\delta+(1-k) \eta)+o(1) \\
& \text { for } x \geq 1 / \sqrt{n} \\
& n Q f(0, k)+\sqrt{n} f_{x}(0, k) \delta+\frac{1}{2} f_{x X}(x, k) \delta+o(1) \\
& \text { for } x=0
\end{aligned}\right.
$$

where $f_{x}(x, k)=\frac{\partial}{\partial x} f(x, k)$ and $f_{x x}(x, k)=\frac{\partial^{2}}{\partial x} f(x, k)$.

We wish to let $n \rightarrow \infty$ and focus attention on the data queue process alone. To derive a diffusion limit for the data
queue process alone, we introduce a sequence of functions $\left\langle f_{n}(x, k)\right\rangle_{n=1}^{\infty}$ for which $f_{n}(x, k) \rightarrow f(x)$, where f is a smooth function satisfying $f^{\prime}(0)=0$. We wish to study the limiting behavior of $A_{n} f_{n}(x, k)$. Let

$$
f_{n}(x, k)=f(x)+\frac{l}{\sqrt{n}} g(x, k)+\frac{1}{n} h(x, k)
$$

where g and h are smooth. Clearly $f_{n}(x, k) \rightarrow f(x)$. Substitution in (3.3) gives
$A_{n} f_{n}(x, k)=\left\{\begin{array}{l}n Q f(x)+\sqrt{n}\left[Q g(x, k)+f^{\prime}(x)(\delta-(1-k) \eta)\right] \\ +\left[Q h(x, k)+g_{x}(x, k)(\delta-(1-k) \eta)+\frac{1}{2} f^{\prime \prime}(x)(\delta+(1-k)\right. \\ x \geq 1 / \sqrt{n} \\ n Q f(0)+\sqrt{n}\left[Q g(0, k)+f^{\prime}(0) \delta\right] \\ +\left[Q h(0, k)+g_{x}(0, k) \delta+\frac{1}{2} f^{\prime \prime}(0)(\delta)\right] \quad x=0 .\end{array}\right.$

We first note that $Q f(x)=0$ since Q operates on the voice or k component only, not on the data. This eliminates the first terms $n O f(x)$ and $n Q f(0)$. We next examine the $Q g(x, k)+f^{\prime}(x)(\delta-(1-k) \eta)$ term. This can be rewritter as

$$
Q g(x, k)+f^{\prime}(x)\left[\delta-(1-k) n-\left((\delta-\eta)+\delta \rho_{v}\right) /\left(1+\rho_{v}\right)\right.
$$

$$
+f^{\prime}(x)\left((\delta-n)+\delta \rho_{v}\right) /\left(1+\rho_{v}\right)
$$

$$
=Q g(x, k)+f^{\prime}(x)\left[-\frac{\rho_{v}}{1+\rho_{V}}+k\right]=f^{\prime}(x) \eta(1-\rho)
$$

We now select the function $g(x, k)$ so that

$$
\operatorname{Qg}(x, k)=-f^{\prime}(x)\left[-\frac{\rho_{v}}{1+\rho_{v}}+k\right] \eta
$$

The function $g(x, k)$ must satisfy the equations

$$
\begin{align*}
& \lambda(g(x, 1)-g(x, 0))=f^{\prime}(x) \frac{\eta \rho_{V}}{1+\rho_{V}} \tag{3.5}\\
& -\mu(g(x, 1)-g(x, 0))=-f^{\prime}(x) \frac{\eta}{1+\rho_{V}}
\end{align*}
$$

The above equations are consistent and redundant, thus any $g(x, k)$ for which

$$
g(x, 1)-g(x, 0)=\frac{f^{\prime}(x) \eta}{\mu\left(1+\rho_{v}\right)}
$$

will suffice. We select
or

$$
\begin{align*}
& g(x, 0)=\frac{1}{2} f^{\prime}(x) \\
& g(x, 1)=\left(\frac{1}{2}+\frac{\eta}{\mu\left(1+\rho_{v}\right)}\right) f^{\prime}(x) \tag{3.6}
\end{align*}
$$

$$
g(x, k)+\left(\frac{1}{2}+\frac{\eta k}{\mu\left(1+\rho_{v}\right)}\right) f^{\prime}(x)
$$

This choice of g gives

$$
A_{n} f_{n}(x, k)=\left\{\begin{array}{c}
-\sqrt{n} \eta(1-\rho) f^{\prime}(x)+\left[Q h(x, k)+\left(\frac{1}{2}+\frac{\eta k}{\mu\left(1+\rho_{v}\right)}\right) f^{\prime \prime}(x)(\delta-(1-k) \eta)\right. \\
\left.\quad+\frac{1}{2} f^{\prime \prime}(x)(\delta+(1-k) \eta)\right], \quad x \geq 1 / \sqrt{n} \\
\sqrt{n}\left(f^{\prime}(0) \delta+f^{\prime}(0) \frac{\eta\left(\rho_{v}-k\left(1+\rho_{v}\right)\right.}{\mu\left(1+\rho_{v}\right)}\right) \tag{3.7}\\
\\
+\left[Q h(0, k)+\left(\frac{1}{2}+\frac{\eta k}{\mu\left(1+\rho_{v}\right)}\right) f^{\prime \prime}(0) \delta+\frac{1}{2} f^{\prime \prime}(0) \delta\right] \\
x=0
\end{array}\right.
$$

Equation (3.7) can be rewritten recalling $f^{\prime}(0)=0$ as

$$
A_{n} f_{n}(x, k)=\left\{\begin{array}{l}
-\sqrt{n} \eta(1-\rho) f^{\prime}(x)+\left[Q h(x, k)+\eta f^{\prime \prime}(x)\left\{\frac{1}{2}+\frac{\eta k}{\mu\left(1+\rho_{v}\right)}\left(\rho_{d^{\prime}}-(1-k)\right)\right.\right. \\
\left.\quad+\frac{1}{2}\left(\rho_{d}+(1-k)\right)\right\}+o(1), \quad x \geq 1 / \sqrt{n} \tag{3.8}\\
Q h(0, k)+\eta f^{\prime \prime}(0)\left[\rho_{d} \frac{1}{2}+\frac{\eta k}{\mu\left(1+\rho_{v}\right)}+\frac{1}{2} \rho_{d}\right], x=0
\end{array}\right.
$$

or

$$
\left[\begin{array}{c}
-\sqrt{n} \eta(1-\rho) f^{\prime}(x)+\left[0 h(x, k)+f^{\prime \prime}(x) \eta \cdot \rho_{d}\left(1+\frac{n k}{\mu\left(1+\rho_{v}\right)}\right)\right]+o(1) \tag{3.9}\\
x \geq 1 / \sqrt{n}
\end{array}\right.
$$

$$
2 h(0, k)+f^{\prime \prime}(0) n \rho_{d}\left(1+\frac{\eta k}{\mu\left(1+\rho_{v}\right)}\right)+o(1), \quad x=0
$$

We rewrite

$$
\mathrm{Qh}(\mathrm{x}, \mathrm{k})+\mathrm{f}^{\prime \prime}(\mathrm{x}) \eta \rho_{\mathrm{d}} \quad 1+\left(\frac{\eta_{\mathrm{k}}}{\mu\left(1+\rho_{\mathrm{v}}\right)}\right)
$$

as

$$
\phi h(x, k)+f^{\prime}(x) \frac{\eta^{2} \rho_{d}}{\mu\left(l+\rho_{v}\right)}\left(k-\frac{\rho_{v}}{1+\rho_{v}}\right)+f^{\prime \prime}(x) \eta \rho_{d}\left(\frac{n \rho_{v}}{\mu\left(l+\rho_{v}\right)^{2}}+1\right)
$$

and choose $h(x, k)$ so that

$$
Q h(x, k)=-f^{\prime \prime}(x) \frac{\eta^{2} \rho_{d}}{\mu\left(1+\rho_{v}\right)}\left(k-\frac{\rho_{v}}{1+\rho_{v}}\right)
$$

The function $h(x, k)$ must satisfy

$$
\begin{align*}
& \lambda(h(x, 1)-h(x, 0))=f^{\prime \prime}(x) \frac{\eta^{2} \rho_{d^{\prime}} \rho_{v}}{\mu\left(1+\rho_{v}\right)^{2}} \tag{3.10}\\
& -\mu(h(x, 1)-h(x, 0))=-f^{\prime \prime}(x) \frac{\eta^{2} \rho_{d}}{\mu\left(1+\rho_{v}\right)^{2}}
\end{align*}
$$

These equations are consistent and redundant so a manifold of solutions are possible. Any one will suffice. This choice of $h(x, k)$ allows one to rewrite (3.9) as

$$
A_{n} f_{n}(x, k)=\left\{\begin{array}{r}
-\sqrt{n} \eta(1-\rho) f^{\prime}(x)+f^{\prime \prime}(x) \eta \rho_{d}\left(\frac{n \rho_{V}}{\mu\left(1+\rho_{V}\right)^{2}}+1\right)+o(1) \\
x \geq 1 / \sqrt{n} \\
f^{\prime \prime}(0) n \rho_{d}\left(\frac{n \rho_{V}}{\mu\left(1+\rho_{V}\right)^{2}}+1\right)+o(1)
\end{array}\right.
$$

We now let $n \rightarrow \infty$. In order for (3.11) to converge to a sensible limit, we must invoke the heavy traffic approximation, that $\rho \rightarrow 1$. Specifically we let $\rho=\rho_{n}=1-(\theta / \sqrt{n})$ for some $\theta>0$. Equation (3.11) becomes in the limit

$$
A A_{n} f_{n}(x, k) \longrightarrow \begin{cases}-n \theta^{\prime}(x)+f^{\prime \prime}(x) n \rho_{d}\left(\frac{n \rho_{v}}{\mu\left(1+\rho_{v}\right)^{2}}+1\right), & x>0 \\ f^{\prime \prime}(0) n \rho_{d}\left(\frac{n \rho_{v}}{\mu\left(1+\rho_{v}\right)^{2}}+1\right), & x=0 \tag{3.12}\\ f^{\prime}(0)=0\end{cases}
$$

This is the generator of a Wiener process with reflecting barrier at 0 , drift of $-\eta \theta$, and

$$
\frac{\sigma^{2}}{2}=n \rho_{d}\left(\frac{n \rho_{v}}{\mu\left(1+\rho_{v}\right)^{2}}+1\right)
$$

The stationary distribution for such a process is an exponential
distribution with parameter

$$
\theta /\left\{\rho_{\mathrm{d}}\left(\frac{n \rho_{v}}{\mu\left(l+\rho_{v}\right)^{2}}+1\right)\right\}
$$

thus the mean queue length is given by

$$
\frac{\rho_{d}}{\theta}\left(\frac{\eta \rho_{v}}{\mu\left(1+\rho_{v}\right)^{2}}+1\right)
$$

It is informative to try to apply this heavy traffic result to a case in which ρ is near but less than 1 . One might replace θ by $\sqrt{n}(1-\rho)$. Since we have scaled by \sqrt{n}, the stationary distribution of $N(t)$, the unscaled queue length should be approximately exponential with parameter

$$
\frac{(1-\rho)}{\rho_{d}\left(\frac{n \rho_{v}}{I\left(1+\rho_{v}\right)^{2}}+1\right)}
$$

The mean queue length becomes

$$
\frac{\rho_{d}}{1-\rho}\left(\frac{\eta \rho_{v}}{\mu\left(1+\rho_{v}\right)^{2}}+1\right)
$$

This result is in exact agreement with Fischer (1977) and is therefore exact. The fluici flow approximation treats η / μ as being large, hence $\left[\eta \rho_{\mathrm{V}} / \mu\left(1+\rho_{\mathrm{V}}\right)^{2}\right]$ is assumed to dominate 1 . This gives $\left(\eta \rho_{d} \rho_{v}\right) /\left[\mu\left(I+\rho_{v}\right)^{2}(l-\rho)\right]$ as the fluid flow mean queue length found in Gaver and Lehoczky (1979) and in Section 2 of this paper.

The diffusion approximation thus found represents a refinement of the fluid flow diffusion approximation. Even if n / μ is large, ρ_{v} may be small, so the l may be important.

Once the Wiener process infinitesimal drift and variance have been found, one can also use the dyanmics of the Wiener process to model the dynamics of the data queue process. Busy period distributions, areas, and transient behavior in general can be determined.

BIBLIOGRAPHY

Barbacci, M. R. and Oakley, J. D. (1976). "The integration of Circuit and Packet Switching Networks Toward a SENET Implementation," l5th NBS-ACM Annual Technique Symposium.

Bhat, U. N. and Fischer, M. J. (1976). "Multichannel Queueing Systems with Heterogeneous Classes of Arrivals;" Naval Research Logistics Quarterly 23

Brady, P. T. (1967). "A Statistical Analysis of On-Off Patterns in 16 Conversations." Bell S.T.J., 73-91.

Burman, D. Y. (1979). "An Analytic Approach to Diffusion Approximations in Queueing.: Ph.D. Dissertation, New York Iniversity.

Chang, Lih-Hsing (1977). "Analysis of Integrated Voice and Data Communication Network," Ph.D Dissertation, Department of Electrical Engineering, Carnegie-Mellon University, November.

Coviello, G. and Vena, P. A. (1975). "Integration of Circuit/ Packet Switching in a SENET (Slotted Envelop NETwork) Concept," National Telecommunications Conference, New Orleans, December, pp. 42-12 to 42-17.

Fischer, M. J. (1977a). "A Queueing Analysis of an Integrated Telecommunications System with Priorities," INFOR 15

Fischer, M. J. (1977b). "Performance of Data Traffic in an Integrated Circuit- and Packet-Switched Multiplex Structure," DCA Technical Report.

Fischer, M. J. and Harris, T. C. (1976). "A Model for Evaluating the Performance of an Integrated Circuit- and PacketSwitched Multiplex Structure," IEEE Trans. on Comm., Com-24 February.

Halfin, S. (1972). "Steady-state Distribution for the Buffer Content of an M/G/l Queue with Varying Service Rate," SIAM J. Appl. Math., 356-363.

Halfin, S. and Segal, M. (1972). "A Priority Queueing Model for a Mixture of Two Types of Customers," SIAM J. Appl. Math., 369-379.
Defense Documentation Center2
Cameron Station
Alcxandria, VA 22314
Library Code 2Code 0142Naval Postgraduate SchoolMontercy, CA 93940
Library Code 55 1Naval Postgraduate SchoolMonterey, Ca. 93940
Dean of Research 1
Code 012A
Naval Postgraduate School Monterey, Ca. 93940
Attn: A. Andrus, Code 55 1
D. Gaver, Code 55 25
D. Barr, Code 55 1
P. A. Jacobs, Code 55 1
P. A. W. Lewis, Code 55 1
P. Milch, Code 55 1
R. Richards, Code 55 1
M. G. Sovereign, Code 55 1
R. J. Stampfel, Code 55 1
R. R. Read, Code 55 1
J. Wozencraft, Code 74 1
Mr. Pcter Badgley 1
ONR Headquarters, Code l02B
800 N. Quincy StrectArlington, VA 22217
Dr. James S. Bailey, Director 1Geography Programs,Department of the NavyONR
Arlington, VA 93940
Prof. J. Lehoczky 5Dept. of StatisticsCarnegie Mellon UniversityPittsburgh, PA. 15213

STATISTICS RNO PRCBABILITY FROCRN：I
No．of COpints

CFFJCH OF NOVGL NESEARCF

AFLINGIUN
\checkmark A
22217

CFFICECF AAVLL FESEARCF

ATTN：Cí FOZ云侖 GRAFTCA
NEK YORK，NY
10253

OIPCCTCR \quad CFICEGF AGAL RESEARCH ERANCH DFF

1

AAVAL FLECTROIIC SYSTEHS COMMAND
DIFECTCR N．JVAL PEAEARCF LAECRATORY 1
ATTH：L İRARY（Jisixl） CCCE 20 ？
WASHINGICN，［．C．
$\therefore 0375$
TECHINCA1 JifConnTIEA r．IVISION 1

WASH！：OGTCH，C．C．
FRCF．C．R．RAKF：R
DEFARTMENT TH STATISTICS
LNIVERSITY（F ACTRH CAFCLIAA CHAFEL HILL？
ACFTH CARCLINA
27E14
FRCF．R．E．OECHHOFER
CEFARTMENT CF CFERATICNS RESEARCH
CCFNELL LNIVERSITY
ITとACA
NEW YORK 14850

FRCF A J JERSHSC
SCHOOL CF ENCIAE：BIAG
UMJV：RSI YY CF CNLJFCNNIA
IRVINERIA
CALIF
92664

PEFARTMENCKOL STATISTICS
LNIVERSITY CF CALIFCRNIA
berkeley ，CALIFERNIA
54720
FFOF F．W．BLOCK

```
FRCF．H．F．EIISCFKE
DEPT．CF GLAATITATIVE
EUSIHESS MAMYSIS
LNIVEKSIT Y CF SCLJHERN CALIFCRNIA LOS ANGELES，CALIFORNIA
CR．DERRILL J．EERDELON ..... 1
AAVAL UNEEFHAJER SYSTEVIS CENTER COCE 21
NEKPORT

RI

02840
J．EE：ECYER JR
SOUTHERM FETHEDIST UNIVERSITY DALLAS
TX
```

DR．J．CHANCRA
U．S．AFAHY RESEADCF．
F．C．EOX 12211 ．
RESEAFCH TRISNGLE PARK
MJFTH CARCLINA
$277 C 6$

```

FRCF．- CFERNCFF
DEPT．CF MAH＝HATICS
MASS INSTITUTE CF TECHMOLOEY
CAMBRIDEE
MASSACHUSETTS 0213 SEL\＆CKSEURE，VA
MR. GENE F. GLEISSNER1CAVIO TA ILCR A, I!AL SHIF RES!ARCHANC CEVELCFilent CENTERRETHESDÄ20084
FROF. S. S. CLPTA 1
DEPARTME:NT OF STATISTICS
PLRCUE UNIVERSITY LAFAYETE
INCIANA 479J7
FFOF C. L. HAASCN ..... J.
OEPT OF MATH. SEIYNCES
STATE LMIEFSITY OF Ñ Y YCRK, BINGHARTCN
BIAGHANTCN
NY ..... 13901
Prof. M. J. Hinich ..... 1
Dedt. of Economics
Virginia Polytechnica Institute and State University
Blacksburg, VA 24061
Dr. D. Depriest, ..... 1
ONR, Code 102B
800 N. Quincy Street ..... Arlington, VA 22217
Prof. G. E. Whitehouse ..... 1
Dept. of Industrial Engineering Lehigh University

Bethlehem, PA 18015
Prof. M. Zia-Hassan ..... 1
Dept. of Ind. \& Sys. Eng.
Illinois Institute of Technology
Chicago, IL 60616
Prof. S. Zacks ..... 1
Statistics Dept.
Virginia Polytechnic Inst.
Blacksburg, VA 24061
Head, Math. Sci Section ..... 1
National Science Foundation 1800 G Street, N.W.
Washington, D.C. 20550

> Dr. H. Sittrop
> Physics Lab., TNO
> P.0. Box 96964

> 2509 JG, The Hague
> The Netherlands

> CR R R ELASHCFF
> BIO:HATHENATICS
> UAIV CF CELIF.
> LCS AMCGLES
> CALIFONOIA


PROF - CECPCE S FISHMAM
L'AVO Gi: ACHTF CARCLIMA
CUR I IACR ANO SYS ANALYSIS
PHILLIFS SANEX
CHAPEL HILL, HCFTH CARCLIAA
```

DR. R. GAAMLCESIKAN
EELLTELEFHCNE LAE HO!POEL, N. J.
07733

```

OR. A. J. CCL [HAN
CHIEF, CO
OIV. 2C5.Cz, ADHIN. A42E L. S. DEFT. CF CCBHERCE WASIINGTCA, [.C.

20234


\section*{hiEST GERNANY}

DR. P. T. HCLMES
CEPT GF MATH.
CLENSCN LNIV.
CLEMSON
SEUTh CAROLINA
Dr. J. A. Hocke ..... 1
Bell Telephone Labs
Whippany, New Jersey ..... 07733
Dr. RobertHooke ..... 1
Box 1982
Pinchurst, No. Carolina 28374
[R.D.L. ICLEFART
CEPTACF CAH:
ST\%.いC!
CALIFERAIA
94305

Dr. D. Trizna, Mail Code 5323
Naval Research Lab
Washington, D.C. 20375

Dr. E. J. Wegman,
OHR, Cdoe 436
Arlington, \(1 / 22217\)

DR. H. KGEAYAStI \(38{ }^{\circ}\)
ICFKTCIRH FEICHTS
NEH YORK
10598

CTATISTICS CEFARTRENT FITTSEURER:
PENNSYLVANIA

OR A A LERGINE
FALD ALTC,
CALIFGRNJA

ER.J. M\&CGUEEN

```

DEFARTMEDTEFES
FITTSEURGF:
PELINSYLVAMI
15213

```

DR RICHARC LAU
EIFECTOR
CFFICECF NAVAL RESEAECF ERANCH OFF ICBOEAST CREEN STREET pasadéna
CA
```

CROS S $\mathcal{L E}$ LET CIMTES, IAC.

```

```

SLITE ?O:
ARLINGICA゙
VA

DR JAHES R MAAR ACEACY

LNIVERSITY CF HISSEURI
coluvela
MO
65202

1

Dr. Leon F. McGinnis School of Ind. And Sys. Eng. Georgia Inst. of Tech. Atlanta, GA 30332

CR.D. R. MCNEIL
DEFT. CF STKTISIICS

FRINCETHN
NEh JURSEY

$$
08540
$$

ER F NOOSTELIER
STAT. CEFT.
farviric laiv.
CaMBRICCE
~ASSACトUSETTS
02135
DR. H. REISER
IEN
THOHAS J. hATSCA FES. CTR.
YCKKTOLN REIGGTS AEV YCFK

```DR. J. RICRESNCEFT. CF NATHEHATICSFCCKEFOLLER UPIV.
NE K YORK
AEH YOFK
```1
\[
10021
\]
DR LINUS SCHRLGE CNIV. CF CFICSGE

GFAD SCROSL OF ELS.

ChICroc, ILLli心IS
Dr. Paul Schweitzer 1
University of Rochester
Rochester, N.Y. 14627
Dr. V. Srinivasan 1
Graduate School of Business
Stanford University
Stanford, CA. 94305Dr. Roy Welsch1
M.I.T. Sloan School
Cambridge, MA 02139
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{CR．JAAET H．NYHRE：} \\
\hline \multicolumn{4}{|l|}{YHE INSIITLTE OF D} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{FCR BUSJRF： ClAKC̈Plit ren＇s culleleg}} \\
\hline & & & \\
\hline & emblit & & \\
\hline CA & & & S1711 \\
\hline
\end{tabular}
CORERGSACE EAGINE
ITHACA
AY . 14850
DR RECACLB. PONELL
\(4 S 5\) SUNMERSTKEET
ECSTCN
MA
```

MROFO R FRICFI
COUE ? Z̈n RGEATIOHSL TEST AND UNRS


```
Nないした。
chembina
\(20 こ 00\)
PROF．M．L．RURI
OEFT．CF KDTHEMATICS

INCIANA LHIVERSITY FOUNOATICN elCONINETCA
IN
DFFARTME111 CI; HATHEMATICS
CCLUMEİUNIVEASITY
NEW YORK,
NéW YORK 1CJ27

\section*{PROF．\(H\) ROS EABLRTT}

DEPGROMEAT CG NAHGMATICS
UNIVERSITY LF CALIFGRIVIA SAA DIEGO
LA JCLLA CALIFRRMIA
\[
92093
\]

94729

CEYARTHEVTRF
YALE UAIVERSJTY
Nifor HAl：N，
coninecticut
C6520
```

FREF LEFARTNAT CF SCRARFJF ENGINEERING
COLOREN S゙TATE U:IXGYSITY
fT. CELLINs,
CCLORAEO
EOSく1
PRCF R- SERFLING:
EEPARTHERTVFST:TISTICS1FLCRIDA STATE UNIVI：RSITYTALLAHASSEE FLORIDA ミ230E

```
FRCF. M. L. SPGOMAN
DEPT. CF ELECTFICNL FNGINEERING
POLYTECHINIC I:NSTITUTE CF NEW YORK BRCCKL YiN,
ner YOSK
11<01
```


COSHINGOC:
D. 20 Co

CRECOTEE SNITR
PGABCXGIE
PENNSYLVAAIA
16801

1
LUIVERSITY CF́F NERTH CARCLINA
$C H A P=L$ HILL
AGFTH CAFClINA
27514

Dr. H. J. Solomon
223/231 01d Maryledone Rd
London NWI 5TH, ENGLARL

AATICHSLEEGUSITY AGEIJCY
FORT
FORT HiEnLE 20755

Mr. J. Gallagher
Naval Underwater Systems Center
Hew London, CT
Dr. E. C. Momahon
Dept. of Oceanotraphy
Universily College
Galway, lreland

DR ATISTICS AARC CCRPUTEF SCI．
UNIV．CF CELAhかんだE
AEGARK
eelámare
19711

FFOF RICHR C VAISLLYKE
RES．AヘALYSISCCRF．
REECHWCOC
CLD TAFFFN FO／C
GLEN CCVE，NËH YORK

PRCF．JOFN H．TUKEY
FINE FALL
FRIACEIDS UNIV．
PRINCETCN
NEW JERSEY
08540


VA
22217

```
FRCF G GATSCA
FING HALI UNIV.
PRINE: OA UN
NEん JE!くらこと
C8540
```

```
MR. [AVIE A. SilCK
1
ADVAiNE:O PROJ C̄CTS GKOUP
COCE EIC?
AAVAL KGSEARCF LAB.
```

hashJIGTCA
CC
20375
MRG WEADELL GASYKES
ARTRUR CR
LCRM $\mu$ ARK
CANBRICCE
MA
02140
PRDF J R THCRESON
DEPARTMENT OF MATHANATICAL SCIENCE
RICE UNIVGRSI Y
tCUSTCN.
TEXAS
77001

FREF. F. A. TILLMAN
DEPT: CF IANUSTFIAL SNGINEERING KANSAS STATE UVIVERSITY manhat tair K

## 66506

 FRINCETENGUNVERSITY

FRINCETON , N. J. 08540

```
PRCF ARATF C\& VEINOTT CNS RESEAPCH
STANFORL URIVEスSTITY
ST ANFCFC
CALIFCRNIA
¢4305
```

CANIEL H. hAGTER

```
STATION SULFRE JNE
1
FACLI, FEANSYLVANIA
15301
```

```
PRCF G GRAC.E HAHRA
```

CEFT:CF STAIVSICS
CNIVETSN
til

53706


```
CLEMSrM, UNIVERSITY
CLENSCH,
SOLTH CARCIINA 2g63I
```



STANEEFC
CA
94305

OFFICE CF MAVAL RESEARCH
SAP: FPninc ISCO iREA CFFICE
760 MAFKI: STREET
SAN FRAACISCC ©ALIFCRNIA 94102

TECFNICAL LIPRARY
MAVAL CRENANCE STATION
IACIAN HEAC MARYLAND 2C64C

AAVAL SHIP ENCINEERING CENTER
1
PhILAOELFHIA
CIVISIDI TECFOICAL LIBRARY
PHILADELFHIA FENITSYLVANIA 19112

BLREAU DF MAVAL FFESCNNEL
CEFAFTHENT CF THE NAVY
TECHMICAL LIEAFRY
HASHINGTCHC.C. 20370

## 1

PHILAOELFHIA FENINSYLVANIA

```
PRCF. \(\because\) •AECE'ート AMEED
1
OEPSRTADATCE MATHENATICS
LNIVERSITY CF ACRTHCARCLINA
CHARLCTTE
NC
```

2822.3

```
 EROF T. H. \(A N E E R S O N\)
DEFARTMENT OF STATISTICS
STANFCRD LNIVEREITY
```

STANFCRE , CALIFCRNIA•S43C5

YALE UIVIVERSITY
AECA HAV:
CEANECTICLT CES20



UNIGA: (jul:


## $4190212$


[^0]:    Research in part sponsored by ONR at Naval Postgraduate School NOOl480WROOO67, and in part by NSF at Carneqie-Mellon University, ENG79 05526.

